## Phase Behavior of Li<sub>2</sub>WO<sub>4</sub> at High Pressures and Temperatures

CARL W. F. T. PISTORIUS

National Physical Research Laboratory, C.S.I.R., P.O. Box 395, Pretoria, South Africa

Received May 17, 1974

The phase diagram of Li<sub>2</sub>WO<sub>4</sub>, previously studied by Yamaoka et al. (J. Solid State Chem. 6, 280 (1973)) has been revised. Li<sub>2</sub>WO<sub>4</sub> II is stable at atmospheric pressure below ~310°C. This phase appears to be a modified spinel, and is tetragonal, a, c = 11.941, 8.409 Å, Z = 16, space group  $I4_1/amd$ . The melting curve of phenacite-type Li<sub>2</sub>WO<sub>4</sub> I rises with pressure with a slope of 0.9°C/kbar to the III/I/liquid triple point at 3.1 kbar, 743°C, beyond which the melting curve of orthorhombic Li<sub>2</sub>WO<sub>4</sub> II rises steeply with pressure (initial slope 31°C/kbar). The Li<sub>2</sub>WO<sub>4</sub> I/III transition line at 3 kbar is almost independent of temperature, i.e., the I/III transition entropy is zero. Li<sub>2</sub>WO<sub>4</sub> II is 21.3% denser than Li<sub>2</sub>WO<sub>4</sub> I at ambient conditions.

#### Introduction

The polymorphic behavior of Li<sub>2</sub>WO<sub>4</sub> has long been a puzzle. Goldschmidt (1) claimed that  $Li_2MoO_4$  and  $Li_2WO_4$ , with the phenacite structure at ambient conditions, change to spinel structures at elevated temperature. Later workers could not confirm this. Li<sub>2</sub>MoO<sub>4</sub> undergoes no transition up to its melting point at atmospheric pressure (2). However, the normal spinel form can be easily prepared by heating the phenacite phase at pressures above  $\sim 5$  kbar (3). In the case of Li<sub>2</sub>WO<sub>4</sub>, on the other hand, Belyaev (2) found a transformation at 660°C, but once again this could not be confirmed (3, 4). Dem'yanets (5) prepared a new cubic modification of Li<sub>2</sub>WO<sub>4</sub> by hydrothermal methods. Very recently Yamaoka et al. (4) studied the phase diagram of  $Li_2WO_4$ to 160 kbar and 800°C. They encountered three new high-pressure phases. Orthorhombic Li<sub>2</sub>WO<sub>4</sub> III, 21.9% denser than phenacite-type  $Li_2WO_4$  I, is formed above the III/II/I triple point near 665°C, 3 kbar. The II/III phase boundary has a negative slope and terminates at the IV/II/III triple point near 545°C, 13 kbar. The IV/III and II/IV phase boundaries branching off here have slopes of 13 and -83°C/kbar, respectively. The melting curve

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain of  $Li_2WO_4$  rises gently with pressure, with almost no slope increase at the III/I/liquid triple point in spite of the large volume change at the I/III transformation.  $Li_2WO_4$  IV (also orthorhombic) is 2.9% denser than  $Li_2WO_4$ III. The powder pattern of  $Li_2WO_4$  II could not be indexed. None of these phases appeared to be the expected spinel.

It is the object of the present study to clear up some of the remaining discrepancies concerning the phase behavior of  $Li_2WO_4$  at elevated temperatures and pressures.

#### Experimental

 $Li_2WO_4$  was prepared by repeated firing at 500°C and regrinding of an intimate mixture of reagent grade WO<sub>3</sub> and  $Li_2CO_3$ , and also by the dehydration of  $Li_2WO_4 \cdot \frac{1}{2}H_2O$  obtained from Hopkin and Williams. The powder patterns of the products were in agreement with reported values.

High-pressure experiments were carried out in a piston-cylinder type apparatus (6, 7). Phase changes were studied by means of differential thermal analysis (DTA) and quenching methods, using chromel-alumel thermocouples. The samples were enclosed in stainless steel capsules. No reaction between samples and container was noted in the solid state, but after repeated melting-freezing cycles the DTA signals obtained were broadened. Only the first few points obtained in any run were used. Heating/cooling rates used for the DTA experiments ranged from  $1.0-1.8^{\circ}$ C/sec. The detailed experimental procedure has been described before (8, 9). Pressures are believed to be accurate to better than  $\pm 1.0$  kbar. Points plotted represent melting temperatures.

#### **Results and Discussion**

## (a) Crystallography of $Li_2WO_4 II^1$

Li<sub>2</sub>WO<sub>4</sub> II prepared at 8 kbar, 540°C yielded a powder pattern in excellent agreement with that reported before (4). The powder pattern could be indexed on the basis of a tetragonal cell, space group  $I4_1/amd$ - $D_{4h}^{19}$ , with  $a = 11.941 \pm 0.006$  Å,  $c = 8.409 \pm 0.004$  Å, Z = 16. The fit to the data is excellent (Table I), and no indication is seen of possible orthorhombic line-splitting.

#### TABLE I

## Powder Pattern of $Li_2WO_4 II^a$ (Filtered Co $K_a$ Radiation)

| d <sub>obsd</sub> (Å) | d <sub>calcd</sub> (Å) | hkl     | I <sup>b</sup> |
|-----------------------|------------------------|---------|----------------|
| 6.880                 | 6.875                  | 011     | 35             |
| 5.971                 | 5.971                  | 200     | 50             |
| 4.507                 | 4.508                  | 211     | 86             |
| 3.762                 | 3.764                  | 112     | 14             |
| 3.598                 | 3.598                  | 031     | 86             |
| 3.437                 | 3.438                  | 022     | 88             |
| 3.082                 | 3.082                  | 231     | 64             |
| 2.736                 | 2.738, 2.729           | 141,013 | 100 br         |
| 2.6708                | 2.6701                 | 420     | 43             |
| 2.4818                | 2.4819                 | 123     | 18             |
| 2.4340                | 2.4341                 | 042     | 56             |
| 2,3403                | 2.3389, 2.3419         | 332,015 | 15             |
| 2.2967                | 2.2974                 | 431     | 36             |
| 2.2544                | 2.2540                 | 422     | 31             |
| 2,1442                | 2.1441                 | 521     | 24 sh          |
| 2.1393                | 2.1396                 | 323     | 35             |
| 2.1113                | 2.1109                 | 440     | 88             |

<sup>1</sup> The designation of phases follows that used in (4).

TABLE I (continued)

| d <sub>obsd</sub> (Å) | d <sub>calcd</sub> (Å) | h k l            | I <sup>b</sup> |
|-----------------------|------------------------|------------------|----------------|
| 2.1019                | 2.1023                 | 004              | 36 sh          |
| 1.9898                | 1.9902                 | 060              | 25             |
| 1.8360                | 1.8368                 | 134              | 38             |
| 1.8175                | 1.8179                 | 053              | 44             |
| 1.7414                | 1.7415                 | 361              | 24             |
| 1.6523                | 1.6518                 | 424              | 20             |
| 1.6085                | 1.6099, 1.6080         | 271,613          | 30 br          |
| 1.5682                | 1.5679                 | 370              | 6              |
| 1.5651                | 1.5671, 1.5644         | 712,514          | 18 br          |
| 1.5523                | 1.5527                 | 543              | 15             |
| 1.5490                | 1.5492                 | 035              | 33             |
| 1.5407                | 1.5408                 | 642              | 36             |
| 1.5007                | 1.4996                 | 235              | 8              |
| 1.4920                | 1.4926                 | 800              | 36 sh          |
| 1.4898                | 1.4896                 | 444              | 51             |
| 1.4572                | 1.4572                 | 073              | 30 sh          |
| 1.4551                | 1.4544                 | 415              | 46             |
| 1.3829                | 1.3826                 | 116              | 15             |
| 1.3787                | 1.3787                 | 831              | 20             |
| 1.3693                | 1.3692                 | 282              | 14             |
| 1.3101                | 1.3106, 1.3095         | 091,743          | 14             |
| 1.2799                | 1.2801                 | 761              | 7              |
| 1.2727                | 1.2725                 | 842              | 18             |
| 1.2566                | 1.2569                 | 374              | 15             |
| 1.2540                | 1.2546                 | 336              | 18             |
| 1.2171                | 1.2171                 | 084              | 13             |
| 1.1952                | 1.1953                 | 017              | 13             |
| 1.1755                | 1.1758                 | 673              | 14             |
| 1.1566                | 1.1566                 | 536              | 11             |
| 1.1488                | 1.1487                 | 0, 1 0, 2        | 10             |
| 1.1120                | 1.1115                 | 815              | 18 sh          |
| 1.1097                | 1.1096                 | 417              | 21             |
| 1.0759                | 1.0766, 1.0749         | 0,11,1;835       | 21 br          |
| 1.0595                | 1.0595                 | 1 0, 5, 1        | 12             |
| 1.0129                | 1.0128, 1.0126         | 1 1, 4, 1; 3 1 8 | 21             |

" Prepared by heating  $Li_2WO_4$  I for 2 hr at 8 kbar, 540°C.

<sup>b</sup> Sh = shoulder, br = broad.

A comparison with the cell constants of some modified spinels, such as  $\beta$ -Co<sub>2</sub>SiO<sub>4</sub> (orthorhombic, *Imma*, *a*, *b*, *c* = 5.753, 11.522, 8.377 Å) (10), Zn<sub>2</sub>SiO<sub>4</sub> V (orthorhombic, *Imma*, *a*, *b*, *c* = 5.740, 11.504, 8.395 Å), and Zn<sub>2</sub>GeO<sub>4</sub> prepared at 72 kbar (tetragonal, I4<sub>1</sub>22 or I4<sub>3</sub>22, *a*, *c* = 5.937, 8.254 Å) (11) strongly suggests that Li<sub>2</sub>WO<sub>4</sub> II is a further modified spinel with a novel distortion of the cubic spinel structure due, probably, to the ordering of Li<sup>+</sup> and W<sup>6+</sup> ions in the octahedral sites of the basic spinel lattice. The volume decrease upon transformation from Li<sub>2</sub>WO<sub>4</sub> I to II is 21.3% at 25°C. Li<sub>2</sub>WO<sub>4</sub> II is therefore less dense than either Li<sub>2</sub>WO<sub>4</sub> III or IV, as confirmed by the phase diagram (4). The phenacite/spinel volume change is 21% for Li<sub>2</sub>MOO<sub>4</sub> (3), quite close to the above value of 21.3% for the phenacite/modified spinel transformation of Li<sub>2</sub>WO<sub>4</sub>.

## (b) Cubic Hydrothermal $Li_2WO_4$

This phase, prepared hydrothermally at 400°C, ~1 kbar (5), was cubic with a = 8.30 Å. However, the selection rules (all allowed) are not consistent with those for spinel. Furthermore, the X-ray density, assuming a spinel structure, is considerably higher even than that of Li<sub>2</sub>WO<sub>4</sub> IV—the phase stable at pressures up to 160 kbar (4).

Comparison of the powder pattern of this phase with that of  $\text{Li}_2\text{WO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$  (12) conclusively shows that Dem'yanets prepared  $\text{Li}_2\text{WO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$  and not  $\text{Li}_2\text{WO}_4$ . Traces of  $\text{Li}_2\text{WO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$  were also present among the products of a run made at 40 kbar,  $400^{\circ}C(13)$ , which contained mainly Li<sub>2</sub>WO<sub>4</sub> IV.

## (c) Stability of Li<sub>2</sub>WO<sub>4</sub> II at Atmospheric Pressure

Upon dehydration of  $\text{Li}_2\text{WO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$  in air at low temperatures, we found that the product was often  $\text{Li}_2\text{WO}_4$  II rather than  $\text{Li}_2\text{WO}_4$  I. A series of quenching runs were thereupon carried out (Table II). Runs 1–8 clearly indicate that  $\text{Li}_2\text{WO}_4$  II is the phase stable below  $310 \pm 110^{\circ}\text{C}$ , while  $\text{Li}_2\text{WO}_4$  I is only stable above this temperature. The  $\text{Li}_2\text{WO}_4$ II  $\rightarrow$  I transformation appeared to be considerably more rapid at ~410°C than the reverse  $\text{Li}_2\text{WO}_4$  I  $\rightarrow$  II transformation at ~200°C.

The Li<sub>2</sub>WO<sub>4</sub> II/I transformation boundary evidently rises from  $310 \pm 110^{\circ}$ C at atmospheric pressure to the Li<sub>2</sub>WO<sub>4</sub> III/II/I triple point somewhere near 3 kbar, 665°C (4).

# (d) The Transition at 660°C, Atmospheric Pressure

In the course of a thermal analysis study of the  $Li_2WO_4$ -PbWO<sub>4</sub> system, Belyaev (2)

| Run<br>No. | Pressure    | Temperature<br>(°C) | Duration | Initial phase                                                                  | Products                                                                                        |
|------------|-------------|---------------------|----------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1          | Atmospheric | 250                 | 24 hr    | Li <sub>2</sub> WO <sub>4</sub> ·½H <sub>2</sub> O                             | Li <sub>2</sub> WO <sub>4</sub> · ½H <sub>2</sub> O<br>+tr · Li <sub>2</sub> WO <sub>4</sub> II |
| 2          | Atmospheric | 280                 | 24 hr    | $Li_2WO_4 \cdot \frac{1}{2}H_2O$                                               | Li₂WO₄ II<br>+Li₂WO₄ · ½H₂O                                                                     |
| 3          | Atmospheric | 350                 | 24 hr    | Li <sub>2</sub> WO <sub>4</sub> · <sup>1</sup> / <sub>2</sub> H <sub>2</sub> O | Li <sub>2</sub> WO <sub>4</sub> II                                                              |
| 4          | Atmospheric | 400                 | 24 hr    | Li <sub>2</sub> WO <sub>4</sub> II                                             | Li <sub>2</sub> WO <sub>4</sub> II                                                              |
| 5          | Atmospheric | 420                 | 24 hr    | Li₂WO₄ Π                                                                       | Li2WO4 I                                                                                        |
| 6          | Atmospheric | 550                 | 24 hr    | Li2WO4 II                                                                      | Li₂WO₄ I                                                                                        |
| 7          | Atmospheric | 250                 | 2 wk     | Li <sub>2</sub> WO <sub>4</sub> I                                              | Li <sub>2</sub> WO <sub>4</sub> I                                                               |
| 8          | Atmospheric | 200                 | 4 wk     | Li <sub>2</sub> WO <sub>4</sub> I                                              | Li <sub>2</sub> WO <sub>4</sub> I<br>+trace Li <sub>2</sub> WO <sub>4</sub> II                  |
| 9          | Atmospheric | 800                 | 1 hr     | Li <sub>2</sub> WO <sub>4</sub> I                                              | $Li_2WO_4 I$<br>+ $Li_2W_2O_7$                                                                  |
| 10         | 8 kbar      | 500                 | 24 hr    | Li <sub>2</sub> WO <sub>4</sub> I                                              | Li <sub>2</sub> WO <sub>4</sub> II                                                              |
| 11         | 12 kbar     | 700                 | 1 hr     | Li <sub>2</sub> WO <sub>4</sub> I                                              | Li2WO4 III                                                                                      |
| 12         | 32 kbar     | 700                 | 1 hr     | Li <sub>2</sub> WO <sub>4</sub> I                                              | Li <sub>2</sub> WO <sub>4</sub> IV                                                              |
| 13         | 8 kbar      | 540                 | 2 hr     |                                                                                |                                                                                                 |

 TABLE II

 Quenching Experiments Involving Li2WO4

detected a transformation in  $Li_2WO_4$  (0% PbWO<sub>4</sub>) at 660°C. This has not been confirmed by other workers (3, 4). A DTA run on pure contained  $Li_2WO_4$  in the present study also failed to reveal any DTA signal near 660°C. It was found, however, that if  $Li_2WO_4$  is heated to well above its melting point at atmospheric pressure, some loss of  $Li_2O$  occurs by evaporation, yielding a mixture of  $Li_2WO_4$ and  $Li_2W_2O_7$  as the run products (Table II, Run 9).

Pure Li<sub>2</sub>W<sub>2</sub>O<sub>7</sub> was therefore prepared from a suitable mixture of Li<sub>2</sub>CO<sub>3</sub> and WO<sub>3</sub> by repeated heating to 500°C and regrinding. The powder pattern was indexed on the basis of a triclinic cell with  $a = 8.261 \pm 0.008$  Å,  $b = 7.035 \pm 0.007$  Å,  $c = 5.047 \pm 0.005$  Å,  $a = 85.37^{\circ}$ ,  $\beta = 102.15^{\circ}$ ,  $\gamma = 110.29^{\circ}$ , Z = 2. These values are in good agreement with, but more precise than, the cell recently reported by Magarill (14).

 $Li_2W_2O_7$  was found to exhibit a sharp and reversible phase transformation with a large latent heat at 666.6  $\pm$  1.5°C and atmospheric pressure. It is therefore suggested that the heat events observed by Balyaev (2) at this temperature were due to the presence of some  $Li_2W_2O_7$ formed by loss of  $Li_2O$  during the foregoing excursions above the melting point of  $Li_2WO_4$ .

## (e) Melting Curves of Li<sub>2</sub>WO<sub>4</sub> I and III

The melting curve of  $Li_2WO_4$  reported previously (4) rises smoothly from ~740°C at atmospheric pressure to ~820°C at 33 kbar, with no inflection noted at the  $Li_2WO_4$ III/I/liquid triple point, presumably near 3 kbar. The  $Li_2WO_4$  I/III transition involves a volume decrease of 21.9% (4), and an extremely drastic increase in slope should occur at the triple point.

Samples for DTA runs at high pressures were contained in nickel, Monel and stainless steel capsules. Sample/capsule reaction was encountered in all cases, but in the case of stainless steel did not noticeably affect the melting temperature observed until ten or more melting/freezing cycles had been completed. Stainless steel was therefore used as container material, and only the first few points obtained in any given run were measured. The results are shown in Fig. 1.



FIG. 1. Phase diagram of  $Li_2WO_4$ . The II/III, II/IV and IV/III phase boundaries are taken from Ref. (4). The I/II equilibrium temperature at atmospheric pressure has an uncertainty of  $\pm 110^{\circ}$ C.

The melting curve of  $Li_2WO_4$  I rises with pressure with an initial slope of 0.9°C/kbar, and its metastable extension was followed to 7.5 kbar, well past the  $Li_2WO_4$  III/I/liquid triple point. Above ~7.5 kbar the melting points discontinuously jump to higher temperatures due to the occurrence of the  $Li_2WO_4$ I/III transformation. The melting curve of  $Li_2WO_4$  III rises steeply with pressure from the III/I/liquid triple point at 3.1 kbar, 743°C (by extrapolation) with an initial slope of 31°C/kbar.

Attempts were made to obtain one or more points on the metastable extension of the  $Li_2WO_4$  IV melting curve to lower pressures and temperatures by converting the sample to  $Li_2WO_4$  IV at ~650°C, 30 kbar, reducing pressure rapidly and then heating. However, the rate of transformation to stable  $Li_2WO_4$ III appeared to be relatively high near the

TABLE III Phase Boundaries of Li<sub>2</sub>WO<sub>4</sub>

| Phase<br>boundary       | Fit (P in kbar)                       | SD          |
|-------------------------|---------------------------------------|-------------|
|                         |                                       |             |
| $\Pi/I^a$               | $t(^{\circ}C) = 310 + 120 P$          |             |
| I/IIIª                  | P = 3                                 |             |
| II/III <sup>b</sup>     | $t(^{\circ}C) = 665 - 12(P - 3)$      |             |
| II/IV <sup>b</sup>      | $t(^{\circ}C) = 545 - 83(P - 13)$     |             |
| IV/III <sup>b</sup>     | $t(^{\circ}C) = 545 + 13(P - 13)$     |             |
| I/liq                   | $t(^{\circ}C) = 740 + 0.89 P$         | 1.6°C       |
| II/liq                  | $t(^{\circ}C) = 743 + 30.8 (P - 3.1)$ |             |
|                         | $-1.05(P-3.1)^2$                      | 3.0°C       |
| Triple                  |                                       | Temperature |
| point                   | Pressure (kbar)                       | (°C)        |
| <br>ПІ/П/І <sup>ь</sup> | ~3                                    | 665         |
| IV/II/III <sup>b</sup>  | 13                                    | 545         |
| III/I/lia               | $3.1 \pm 0.8$                         | 743 + 2     |

<sup>a</sup>Approximate.

<sup>b</sup> From Ref. (4).

melting lines and only the melting of  $Li_2WO_4$  III was observed.

The phase relations of  $Li_2WO_4$  are summarized in Table III.

## (f) Thermodynamic Quantities

Application of the Clapeyron-Clausius equation and use of the known slopes and volume changes allow us to calculate some approximate thermodynamic transition properties. We find:

> $\Delta S_{II/I} \simeq 10 \text{ J/mole deg}$  $\Delta S_{I/III} \simeq 0$

Then, from the earlier value of  $\Delta V_{I/III}$  (4) and the present relations at the III/I/liq triple point, assuming  $\Delta S_{I/liq}$  to be approximately constant along the short melting curve of Li<sub>2</sub>WO<sub>4</sub> I,

> $\Delta S_{I/Iiq} \simeq 40 \text{ J/mole deg}$   $\Delta V_{I/Iiq} \simeq 0.4 \text{ cm}^3/\text{mole (at } P = 0)$   $\Delta S_{II/Iiq} \simeq 40 \text{ J/mole deg (at } P = 3 \text{ kbar)}$  $\Delta V_{II/Iiq} \simeq 13 \text{ cm}^3/\text{mole (at } P = 3 \text{ kbar)}.$

The entropy changes at the II/III, II/IV and IV/III transformation lines could in principle be calculated in the same way, but since no data are available concerning the differential compressibilities and thermal expansion coefficients of these phases, large errors may result in view of the small density differences between  $Li_2WO_4$  II, III, and IV.

## Acknowledgments

The author wishes to thank Martha C. Pistorius who wrote the computer programs used, J. Erasmus and his staff, and A. de Kleijn and his staff who kept the apparatus in good repair, and were responsible for the manufacture of the furnace parts. Calculations were carried out on the IBM System 360/65H of the National Research Institute for Mathematical Sciences.

#### References

- 1. V. M. GOLDSCHMIDT, Skr. Akad. Oslo 2, 107 (1926).
- 2. I. N. BELYAEV, Russ, J. Inorg. Chem. 6, 602 (1961).
- 3. J. LIEBERTZ AND C. J. M. ROOYMANS, Solid State Comm. 5, 405 (1967).
- S. YAMAOKA, O. FUKUNAGA, T. ONO, E. IIZUKA, AND S. ASAMI, J. Solid State Chem. 6, 280 (1973).
- 5. L. N. DEM'YANETS, Sov. Phys. Cryst. 13, 741 (1969).
- G. C. KENNEDY AND R. C. NEWTON, *In* "Solids under Pressure" (W. Paul and D. M. Warschauer, Eds.), McGraw-Hill, New York, 1963.
- G. C. KENNEDY AND P. N. LAMORI, *In* "Progress in Very High Pressure Research" (F. P. Bundy, W. R. Hibbard, and H. M. Strong, Eds.), p. 304. Wiley, New York, 1961.
- 8. C. W. F. T. PISTORIUS AND J. B. CLARK, High Temp. High Press. 1, 561 (1969).
- 9. P. W. RICHTER AND C. W. F. T. PISTORIUS, J. Solid State Chem. 3, 197 (1971).
- M. TOKONAMI, N. MORIMOTO, S. AKIMOTO, Y. SYONO, AND H. TAKEDA, Earth Planet. Sci. Letters 14, 65 (1972).
- 11. Y. SYONO, S. AKIMOTO, AND Y. MATSUI, J. Solid State Chem. 3, 369 (1971).
- H.E.SWANSON, M. C. MORRIS, R. P. STINCHFIELD, AND E. H. EVANS, Natl. Bur. Stand. (U.S.) Mon. 25-2, 20 (1963).
- 13. C. J. M. ROOYMANS, personal communication.
- 14. S. A. MAGARILL, R. F. KLEVTSOVA, AND V. V. BAKAKIN, Krist. 18, 269 (1973).